OVERVIEW OF SATELLITE CLOUD & RADIATION PRODUCTS FOR CRYSTAL-FACE

Patrick Minnis, Bill Smith, Jr., Louis Nguyen

Atmospheric Sciences
NASA Langley Research Center
Hampton, VA

Dave Doelling, Mandy Khaiyer, Rabi Palikonda, Dung Phan

AS&M, Inc. Hampton, VA

February 26, 2003

OBJECTIVE

- Provide Status Report of LaRC Cloud Products
- Note problem areas
- Future Processing

Other LaRC CRYSTAL Satellite/Model Papers

Talks

- Doelling Cirrus/anvil statistics
- Smith Surface Validations

Posters

- Nguyen Web site, interactive resources, product availability
- Heck Comparisons with model-generated cloud stats
- Duda Comparisons with aircraft data
- Chepfer Dual-angle, multi-satellite studies
- Wang ARPS model forecasts/assimilation

DATA

Geostationary imager 4-km pixels

GOES-8, GOES-10

- 5 15 min resolution (1-km VIS available)
- MODIS 1-km pixels

Aqua (1330), Terra (1030)

- 2 overpass/day (night-day)
- AVHRR 1-km pixels

NOAA-15 (0730), NOAA-16 (1430)

- 2 overpass/day (night-day)
- VIRS 2-km pixels

TRMM (variable overpass times)

- Input
- 0.65 &/or 1.6 reflectances
- 3.7, 10.8, and 12-µm brightness temperatures
- RUC T(z), q(z), O₃(z) each hour
- Elevation, water %, IGBP type, CERES clear-sky albedos (10')

CLOUD MASK

Classify each imager pixel as cloud / clear / bad using multiple cascading thresholds, then each pixel is strong or weak

DAYTIME: SZA < 82°, 0.6, 1.6, 3.8, 11, 12 μ m

NIGHTTIME: 3.8, 11, 12 μm

STANDARD DAYTIME MASK ALGORITHM

Top Level Daytime Flow Chart

STANDARD <u>NIGHTTIME</u> MASK ALGORITHM

Top Level Nighttime Flow Chart

CLOUD RETRIEVAL METHODOLOGY

Compute ice & water solution, select most likely based on

model fits, temperature, LBTM classification, 1.6-µm reflectance

water droplets: $re = 2 - 32 \mu m$

hexagonal column distributions: $De = 6 - 135 \mu m$

• No retrievals: reclassify as clear or status quo, 3-4%

RETRIEVAL METHODS

DAY: Visible Infrared Solar-Infrared Split-Window Technique (VISST) see *Minnis et al.* (1995, 1998)

NIGHT: Solar-infrared Infrared Split-Window Technique (SIST)

see Minnis et al. (1995, 1998)

PIXEL-LEVEL CLOUD PROPERTIES

EFFECTIVE RADIATING TEMP Tc

EFFECTIVE HEIGHT, PRESSURE Zc, pc

TOP HEIGHT, PRESSURE Zt, pt

THICKNESS

EMISSIVITY ε

PHASE (water or ice; 1 or 2)

WATER DROPLET EFFECTIVE RADIUS re

OPTICAL DEPTH τ

LIQUID WATER PATH LWP

ICE EFFECTIVE DIAMETER De

ICE WATER PATH IWP

BROADBAND ALBEDO, LONGWAVE FLUX α , OLR

Cloud properties from GOES-8, 1615 UTC July 27, 2002

Some Cautions for Users

- Day-night differences (algorithm & spectral changes)
 - optical depth limitations at night (IR goes black)

 τ < 8 not bad, τ > 8 means optically thick

- Twilight $(82^{\circ} < SZA < 90^{\circ})$ & low sun $(SZA > 70^{\circ})$
 - twilight: mask & retrievals questionable because VIS & 3.7 less useful
 - low sun: 3-D effects cause shadowing & bright cloud sides=> τ & re, Ac
- Low-level cumulus clouds
 - daytime: partially filled pixels τ too low, re too high
 - nighttime: some low clouds missed
- Cloud overlap: not explicitly detected or corrected, affects semitransparent clouds
 - cirrus heights may be too low
 - cloud properties are mix of upper & lower cloud
 - not as bad at night because surface & low clouds temps close

More Cautions

- Cloud edges: partially filled cirrus may be interpreted as large re water
- Calibrations
 - GOES-8 VIS based on TRMM VIRS, MODIS is brighter: $\tau(\text{MODIS}) > \tau(\text{GOES})$
- Input land clear-sky albedos based on VIRS/MODIS database

 GOES-8 VIS different filter function
 - ocean albedos from an open ocean model
 bright shallow areas may be mistaken for clouds
 - skin temperatures based on RUC surface air temperatures
 may under-/overestimate Tskin at given time & location
 affects mask and retrieval of thin cirrus properties
 - RUC has some burps

contagious: cloud retrieval burps

GOES-8 Cloud Products, 1132 UTC, July 13

GOES-8 Cloud Products, 1215 UTC, July 13

GOES-8 Cloud Products, 1315 UTC, July 13

GOES-8 Cloud Products, 2245 UTC, July 29

GOES-8 Cloud Products, 2332 UTC, July 29

GOES-8 Cloud Products, 0015 UTC, July 30

Comparison of Near-Simultaneous MODIS & GOES Cloud Retrievals 1604/1615 UTC 27 July 2002

* Shallow-water effect on MODIS retrieval around Andros Island

COMPARISON OF MODIS & GOES-8 RETRIEVALS, 1630 UTC, 13 JULY 2002

Terra MODIS vs VIRS

VIRS reflectance < MODIS for brighter scenes

VIRS reflectance > MODIS for dim scenes

Low end differences taken into account with clear-sky reflectance modeling, no high end correction

Fig. 11. Correlation of VIRS and MODIS ocean VIS data, Mar 2001.

Minnis et al., 2002, J. Atmos. Oceanic Technol., 19, 1233-1249.

PARTIALLY CLOUD-FILLED PIXELS

- yields large re
- may misclassify cirrus as water cloud with large re

Validation of Thin (τ < 5) Cloud Height over ARM SGP, MODIS 2001

Nearly all thin cloud heights are within boundaries of cloud:

Clouds higher at night due to greater errors in skin temperature

Boundary-layer cloud heights sometimes too high due to inversions

Implies cirrus optical depths are quite reasonable

Validation of CERES Cloud Optical Depth (Stratus)

ARM SGP, VIRS 1998; MODIS 2001

Excellent correspondence between CERES and surface-derived optical depths over ARM SGP site

For GOES-8, τ is comparable to VIRS comparison (*Dong et al. JAS 2002*)

Validation of CERES Cloud Droplet Size (Stratus)

ARM SGP, VIRS 1998; MODIS 2001

CERES average droplet sizes within <u>+</u> 1 µm of surface-based values over ARM SGP site

For GOES-8, re is 14% larger than sfc value (*Dong et al. JAS 2002*)

Validation of CERES Cloud Liquid Water path (Stratus) ARM SGP, VIRS 1998; MODIS 2001

CERES LWP slightly greater than surface-based values over ARM SGP site

For GOES-8, LWP 4% greater than sfc value (*Dong et al. JAS 2002*)

COMPARISON OF GOES-8 CLOUD AMOUNTS WITH TOTAL SKY IMAGER WESTERN GROUND SITE

ALL CLOUDS

GOES bias due primarily to TSI missing thin cirrus, also scattered cu

N = 971 Avg_tsi = 56.827 Avg_visst = 65.461 Bias = 8.634 RMS = 23.403

OPTICALLY THIN CLOUDS

	0	0	0	1	7	80-100
Τ	0	0	1	1	23	60-80
S	0	0	0	8	21	40-60
ı	2	3	6	3	13	20-40
%	1	5	0	2	1	0-20
	0-20	20-40	40-60	60-80	80-100	
VISST 10 km CLDAMT tau < 2: Zeff > 6km						

SUMMARY

- GOES-8 results are in pretty good shape and should be useful
- Beware of the caveats!
- Reprocessing

GOES-8: partial cloudiness (1-km VIS + 4-km IR)

upgrade background reflectance & skin temperatures

try ID of overlapping thin clouds

try improvement of twilight cases

test increasing τ limit at night

MODIS: upgrade background reflectance & skin temperatures

examine calibration for consistency with GOES

Need access to Aqua data!

AVHRR: run N-15 & 16 cases

• Continue validation with CRYSTAL data collaboratively

DATA ACCESS

• Data viewing and access: http://angler.larc.nasa.gov/crystal/

Check out Louis Nguyen poster for examples of tools, images, data links, etc.

Thanks to J. Mather & PARSL gang for the TSI & radar data

